pandapower - an Open Source Framework for Automated Evaluations of Future Power Systems

L. Thurner, A. Scheidler, M. Braun
Fraunhofer IWES & University of Kassel

1st International Conference on Large-Scale Grid Integration of Renewable Energy in India
New Delhi, India
September 6th – 8th, 2017
Introduction

- Increasing penetration of power systems with renewable energy resources (RES)
 - Germany: 10 GW (1999) \rightarrow >100 GW (2016)
 - India: 43 GW (now) \rightarrow 175 GW (plan for 2022)

- Majority of RES are installed in distribution networks
 - Large amount of different networks
 - High diversity of networks

- Studying the impact of RES installation is vital to guarantee cost-efficient planning and operation of future power systems
 - General conclusions are difficult to draw
 - Reliable analysis has to be based on large amount of network data

\rightarrow New tools for the automated analysis of networks are necessary

\rightarrow Introduction of the new open source power systems analysis tool pandapower
pandapower vs. PyPSA

<table>
<thead>
<tr>
<th>pandapower</th>
<th>PyPSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python based open source Tool for Power System Analysis</td>
<td></td>
</tr>
<tr>
<td>Able to solve power flow and optimal power flow problems</td>
<td></td>
</tr>
<tr>
<td>Based on a tabular data structure using the Python library pandas</td>
<td></td>
</tr>
<tr>
<td>Focus on Detailed Power System Modelling</td>
<td>Focus on Energy Modelling</td>
</tr>
<tr>
<td>Static Power Flow, Short Circuit and Topological Analysis</td>
<td>Multi-Period Optimal Power Flow</td>
</tr>
<tr>
<td>Distribution System Analysis and Planning</td>
<td>Transmission System Analysis and Planning</td>
</tr>
<tr>
<td>http://www.uni-kassel.de/go/pandapower</td>
<td>https://github.com/FRESNA/PyPSA</td>
</tr>
</tbody>
</table>
pandapower Pro

GRID PLANNING
- Metaheuristic Grid Extension Planning
- Automated Sectioning Point Optimization
- Topological Network Optimization

GRID ANALYSIS
- Grid Loss Analysis
- Determination of Hosting Capacity
- Reliability and n-1 Outage Analysis

GRID OPERATION
- Time Series Simulations
- Local, Decentral and Central Controllers
- Co-Simulation Framework

APPLICATION
- Grid Loss Analysis
- Determination of Hosting Capacity
- Reliability and n-1 Outage Analysis

FRAMEWORK
- pandapower
 - State Estimation
 - Network Building API
 - Topological Graph Search Analysis
 - Optimal Power Flow
 - Different Power Flow Solvers
- Large Library of Grid Element Models
- IEC 60909 Short Circuit Calculation
- Data structure based on pandas
- Plotting

INPUT
- Conversion from other Tools / Formats
 - PowerFactory
 - PSS Sincal
 - Neplan
 - CIM
- Forecasts for
 - Probabilistic DER installation scenario
 - Generic load profiles
- Boundary Conditions
 - Operational Limits
 - Planning Principles
 - Topology Constraints
 - Contingency Constraints

OPEN SOURCE

Martin Braun
Integration Conference
New Delhi, India | 6-9 Sep 2017
http://www.uni-kassel.de/go/pandapower
Overview

- pandapower
 - Element Models
 - Analysis Functionality and Validation
 - Minimal Example

- Hosting Capacity
 - Boxplot Distribution
 - Example Implementation in pandapower
 - Real World Case Study Results

- Conclusion
Overview

- pandapower
 - Element Models
 - Analysis Functionality and Validation
 - Minimal Example

- Hosting Capacity
 - Boxplot Distribution
 - Example Implementation in pandapower
 - Real World Case Study Results

- Conclusion
pandapower Electric Element Models

<table>
<thead>
<tr>
<th></th>
<th>MATPOWER</th>
<th>PSAT</th>
<th>OpenDSS</th>
<th>FyPSA</th>
<th>GridCal</th>
<th>pandapower</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIP-load</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Line</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2W-Transformer (π)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2W-Transformer (T)</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3W-Transformer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>DC Line</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ideal Switches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Synchronous Generator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Static Load / Generator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shunt</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Unsym. Impedance</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ward Equivalents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
pandapower Switch Model

- Ideal Bus-Bus and Bus-Branch switch models

<table>
<thead>
<tr>
<th>Switch Configuration</th>
<th>Bus-Bus Switches</th>
<th>Bus-Line Switches</th>
<th>Bus-Transformer Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Bus-Bus Switches Diagram]</td>
<td>![Bus-Line Switches Diagram]</td>
<td>![Bus-Transformer Switches Diagram]</td>
</tr>
<tr>
<td>Common Approximation</td>
<td>![Common Approximation Diagram]</td>
<td>![Common Approximation Diagram]</td>
<td>![Common Approximation Diagram]</td>
</tr>
<tr>
<td>pandapower Switch Model</td>
<td>![pandapower Switch Model Diagram]</td>
<td>![pandapower Switch Model Diagram]</td>
<td>![pandapower Switch Model Diagram]</td>
</tr>
</tbody>
</table>

→ Allows detailed modelling of substations and tie-line switches
pandapower Functionality

Electric Analysis
- Power Flow
- Optimal Power Flow
- State Estimation
- Short-Circuit Calculation

Further Functionality
- Plotting
- Converter
- Generic Networks

Topological Analysis
- Graph Searches on Electric Network
Model Tests and Validation

- Power Flow Results are compared with commercial software to validate models
- Validation tests exist for every pandapower element
- About 250 unit tests for overall pandapower functionality
Creating Minimal Example

```python
import pandapower as pp

# create empty net
net = pp.create_empty_network()

# create buses
bus1 = pp.create_bus(net, vn_kv=20., name="Bus 1")
bus2 = pp.create_bus(net, vn_kv=0.4, name="Bus 2")
bus3 = pp.create_bus(net, vn_kv=0.4, name="Bus 3")

# create bus elements
pp.create_ext_grid(net, bus=bus1, vm_pu=1.02)
pp.create_load(net, bus=bus3, p_kw=100, q_kvar=50)

# create branch elements
trafo = pp.create_transformer(net, hv_bus=bus1, lv_bus=bus2,
                               std_type="0.4 MVA 20/0.4 kV")
line = pp.create_line(net, from_bus=bus2, to_bus=bus3,
                      length_km=0.1, std_type="NAYY 4x50 SE")
```

Grid Connection:
- Voltage: 1.02 pu

Transformer:
- Transformer Ratio: 20 / 0.4 kV
- Rated Power: 400 kVA
- Short Circuit Voltage: 6 %
- Short Circuit Voltage (real part): 1.425 %
- Open Loop Losses: 0.3375 %
- Iron Losses: 1.35 kW

Line:
- Length: 100 m
- Cable Type: NAYY 4x50 SE
- Resistance: 0.642 Ω/km
- Reactance: 0.083 Ω/km
- Capacity: 210 mF/km
- Max. thermal current: 142 A

Load:
- Active Power: 100 kW
- Reactive Power: 50 kVar
Running A Power Flow

- Running a power flow and inspecting the results:

```python
pp.runpp(net)
print("Trafo loading: %.2f %%\"\net.res_trafo.loading_percent.at[0])
print("Line loading: %.3f %%\"\net.res_line.loading_percent.at[0])
print("Voltage vector: %s\"\net.res_bus.vm pu.values)
```
Overview

- pandapower
 - Element Models
 - Analysis Functionality and Validation
 - Minimal Example

- Hosting Capacity
 - Boxplot Distribution
 - Example Implementation in pandapower
 - Real World Case Study Results

- Conclusion
Hosting Capacity Distribution

- Concentrated distribution allows installation of only 8 PV plants
- Even distribution allows installation of 15 PV plants

Hosting Capacity is not one value but distribution of values
Hosting Capacity in pandapower

```python
import pandas as pd

results = pd.DataFrame(columns=["installed", "violation"])
for i in range(iterations):
    # Initialize new run
    net = load_network()
    installed_kw = 0
    while 1:
        # Check for violation of any constraint
        violated, violation_type = violations(net)
        if violated:
            # Save result and end iteration
            results.loc[i] = [installed_kw, violation_type]
            break
        else:
            # Add additional PV plant
            plant_size = get_plant_size_kw()
            bus = choose_bus(net)
            pp.create_einj(net, bus, p_kw=-plant_size, q_kvar=0)
            installed_kw += plant_size
```

```python
import pandapower as pp

def violations(net):
    pp.runpp(net)
    if net.res_line.loading_percent_max() > 50:
        return (True, "Line \n Overloading")
    elif net.res_trafo.loading_percent_max() > 50:
        return (True, "Transformer \n Overloading")
    elif net.res_bus.vm_pu_max() > 1.04:
        return (True, "Voltage \n Violation")
    else:
        return (False, None)
```

![Histogram and graph](image-url)
Hosting Capacity in pandapower

Hosting capacity analysis yields

- Distribution of installable capacity
- Distribution of limiting causes
Comparing Hosting Capacity to Expected PV Expansion

- Analysis of 111 Low Voltage Networks
- Comparing hosting capacity to expected installations

→ Study shows that most networks can host expected additional installation

Figure courtesy of Romande Energie
Assessment of Smart Grid Technologies

- Advanced PV Inverters functions
 - Reactive Power Control
 - Constant CosPhi
 - Q(U)-control (volt-var function)
 - CosPhi(P)-control (watt-var function)
 - Active power curtailment (e.g. peak shaving)

Figure courtesy of Romande Energie
Assessment of Smart Grid Technologies

- Advanced OLTC transformer control (AOLTC)
- Installation of additional voltage regulators (e.g. MV/LV transformers with OLTC-contoller)
- Combination of Smart Grid Technologies

Figure courtesy of Romande Energie
Technical and Economical Assessment of MV/LV OLTC transformer (rONT)

- Analysis of 329 Low Voltage Networks
 - PV Hosting Capacity
 - Full rooftop potential (maximum installable PV capacity)

→ Voltage problems in 85 LV networks

→ can potentially be mitigated with controllable MV/LV transformer (rONT)

Figure courtesy of Bayernwerk
Assessment of Smart Grid Technologies

- Increase of Hosting Capacity (median value) by MV/LV OLTC 85 real LV grids
Technical and Economical Assessment of MV/LV OLTC transformer

- Analysis of 85 Low Voltage Networks with voltage violations
- rONT mitigates all problems in 29 networks

⇒ rONT only effective in 29 / 329 overall networks

Figure courtesy of Bayernwerk
Overview

- pandapower
 - Element Models
 - Analysis Functionality and Validation
 - Minimal Example
- Hosting Capacity
 - Boxplot Distribution
 - Example Implementation in pandapower
 - Real World Case Study Results
- Conclusion
Conclusion

- pandapower was published in November 2016
 - Very positive feedback and participation from the community
 - Already deployed in multiple projects worldwide
 - Presented examples (and many more) are available as interactive notebooks on https://github.com/lthurner/pandapower/tree/develop/tutorials

- Applications of pandapower
 - Hosting capacity analysis was presented as example application with real world examples
 - pandapower has been successfully deployed in other applications, such as power system planning, operation, network studies, loss studies etc.

⇒ continuous development on github: https://github.com/lthurner/pandapower
⇒ Subscribe for pandapower updates on https://www.uni-kassel.de/go/pandapower
Annex – Minimal Example
Creating Minimal Example

```python
import pandapower as pp

# create empty net
net = pp.create_empty_network()

# create buses
bus1 = pp.create_bus(net, vn_kv=20., name="Bus 1")
bus2 = pp.create_bus(net, vn_kv=0.4, name="Bus 2")
bus3 = pp.create_bus(net, vn_kv=0.4, name="Bus 3")

# create bus elements
pp.create_ext_grid(net, bus=bus1, vm_pu=1.02)
pp.create_load(net, bus=bus3, p_kw=100, q_kvar=50)

# create branch elements
trafo = pp.create_transformer(net, hv_bus=bus1, lv_bus=bus2,
                              std_type="0.4 MVA 20/0.4 kV")
line = pp.create_line(net, from_bus=bus2, to_bus=bus3,
                      length_km=0.1, std_type="NAYY 4x50 SE")
```

Grid Connection:
- Voltage: 1.02 pu

Transformer:
- Transformer Ratio: 20 / 0.4 kV
- Rated Power: 400 kVA
- Short Circuit Voltage: 6 %
- Short Circuit Voltage (real part): 1.425 %
- Open Loop Losses: 0.3375 %
- Iron Losses: 1.35 kW

Line:
- Length: 100 m
- Cable Type: NAYY 4x50 SE
- Resistance: 0.642 Ω/km
- Reactance: 0.083 Ω/km
- Capacity: 210 nF/km
- Max. thermal current: 142 A

Load:
- Active Power: 100 kW
- Reactive Power: 50 kVar

http://www.uni-kassel.de/go/pandapower
Running A Power Flow

- Running a power flow and inspecting the results:

```python
pp.runpp(net)
print("Trafo loading: \%.2f \%"%net.res_trafo.loading_percent.at[0])
print("Line loading: \%.3f \%"%net.res_line.loading_percent.at[0])
print("Voltage vector: \%s\%"%net.res_bus.vm_fu.values)
```

Trafo loading: 29.29 \%
Line loading: 117.835 \%
Voltage vector: [1.02 1.00884272 0.96443057]

→ Detailed results for each element
Running A Power Flow – Tap Changers

- Change the transformer tap position:

```python
net.trafo.tp_pos.at[trafo] = -1
pp.runpp(net)
print("Trafo loading: %.2f %%%n"%net.res_trafo.loading_percent.at[0])
print("Line loading: %.3f %%%n"%net.res_line.loading_percent.at[0])
print("Voltage vector: %s"%net.res_bus.vm pu.values)
```

→ Transformer ratio changes
→ Voltage at the low voltage side of the transformer rises
Running A Power Flow – Switches

- Introduce an open switch at the end of the line:

```python
pp.create_switch(net, bus=bus3, element=line, et="1", closed=False)
pp.runpp(net)
print("Trafo loading: %.2f %%")%net.res_trafo.loading_percent.at[0])
print("Line loading: %.3f %%")%net.res_line.loading_percent.at[0])
print("Voltage vector: %s")%net.res_bus.vm_pu.values)
```

- Load bus is cut from power supply
- Voltage at isolated bus is returned as *nan (not a number)*
Topological Analysis

- Find all buses without galvanic connection to slack bus:
  ```python
  import pandapower.topology as top
  top.unsupplied_buses(net)
  ```

 {2}

- Find all buses on the same voltage level as Bus 2 (after closing switch)
  ```python
  net.switch.closed.at[0] = True
  mg = top.create_nxgraph(net, include_trafos=False)
  list(top.connected_component(mg, 2))
  ```

 [2, 1]
Short Circuit Analysis

- Define short circuit parameters of external grid
- Calculate short circuit currents according to IEC 60909
 - Initial short circuit current I'_{k}
 - Peak short circuit current i_p

```python
import pandapower.shortcircuit as sc
net.ext_grid["s_sc_max_mva"] = 100
net.ext_grid["rx_max"] = 0.1
sc.calc_sc(net, case="max", ip=True, r_fault_ohm=2.)
print(net.res_bus_sc)
```

```
<table>
<thead>
<tr>
<th>ikss_ka</th>
<th>ip_ka</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.534707 4.317318</td>
</tr>
<tr>
<td>1</td>
<td>0.126631 0.182666</td>
</tr>
<tr>
<td>2</td>
<td>0.122698 0.176991</td>
</tr>
</tbody>
</table>
```
Contact

Prof. Dr. Martin Braun
Head of Business Field
Grid Planning and Operation
- Mail: martin.braun@iwes.fraunhofer.de
- Phone: +49 561 7294 118
- www.iwes.fraunhofer.de

Dr. Alexander Scheidler
Research associate
- Mail: alexander.scheidler@iwes.fraunhofer.de

Fraunhofer IWES - Business Field Grid Planning and Operation

- Techno-economic studies for analyzing, planning, operation, control, stability of power systems
- Automated Planning Tools
 (e.g. pandapower http://www.uni-kassel.de/go/pandapower)
- Operational Tools (algorithms for ancillary services, hardware/software platform for pilot systems)
- (Co-Simulation) Test Platforms for operational solutions (www.opsim.net)
- Multi-Energy System Planning and Operation (Power, Heat, Gas)
- Microgrid/ Hybrid System Test Bench and PHiL Tests
Contact

Prof. Dr. Martin Braun
Chair of Energy Management and Power System Operation
• Mail: martin.braun@uni-kassel.de
• Phone: +49 561 804 6202
• http://www.uni-kassel.de/eecs/e2n

Leon Thurner
Research associate
• Mail: leon.thurner@uni-kassel.de

Department Energy Management and Power System Operation - e²n

• Development of models, methods, algorithms and tools for analysis, operation and control, and design of the future decentralized power system with high share of renewable energies. e.g. pandapower
• Multi-Objective/Perspective/Level Optimisation of the power system
• Simulation of the power system over time scales and system levels.
• Resilient Control Design incl. power system stability, network restoration, microgrid structures