Testing Renewable Power Plants on High-Voltage-Ride-Through Capability

Grid Code Requirements and Testing Procedure

Dipl.-Wirt.-Ing. Julian Langstädtler
Division Manager Innovation & Consulting | FGH GmbH | Germany

1st International Conference on Large-Scale Grid Integration of Renewable Energy in India, 08/09/2017
FGH – Who we are

Customized solutions in electrical power engineering

Research & development
Power system analysis
Systems engineering
Smart grid systems
Training & education

FGH e.V.
Research

FGH GmbH
Engineering

FGH ZGmbH
Certification

Generating units
Generating plants
Components

Storage systems
Smart grid technologies

Software development
Engineering services
System analysis & studies
Grid integration
FRT test system design
Agenda

- Introduction and Motivation
- HVRT in Grid Codes
- Testing of HVRT Capability
- Experiences from Testing
- Conclusion
Introduction

Current Situation of Fault-Ride-Through

- LVRT capability mandatory requirement for Power Generating Units (PGU) in grid codes
 - Disconnection threatens grid stability
- LVRT testing equipment and procedures have been developed by FGH already in 2003
 - Standardized more than 10 years ago and incorporated in IEC 61400-21
- Today new challenges with further penetration of dispersed power generators
 - Temporary overvoltage in high voltage systems
 - New grid code developments and requirements
 - 2015 in Germany: VDE-AR-N 4120 (110 kV)
Motivation

Relevance of Overvoltage and HVRT

- Overvoltage due to
 - Line capacities combined with load shedding or generation tripping
 - Voltage recovery after fault clearance

- Difference in terms of
 - Time duration (ms...min)
 - Location and propagation

- Example: Incident in Germany in 2012
 - Capacitive voltage boost after 2ph fault with loss of 1.7 GW

→ HVRT capability reduces risk of generation tripping
HVRT in Grid Codes

First requirements can be found

- Result of such incidents:
 - HVRT capability required in recent grid codes (evolution similar to LVRT)
- In focus: VDE-AR-N 4120 specifies dynamic system support of PGUs with LVRT and HVRT capability
 - Up to 130% U_n for 100 ms and 125% U_n until 60 s
 - HVRT capability
- Reactive current injection
 - Grid support -> under-excited
- HVRT also in IT, RSA, AUS, CA
- Discussed and proposed also in USA, DK and India (!)

Source: VDE 4120
HVRT in Grid Codes

HVRT Requirement also in Indian Grid Code Draft

- Central Electricity Authority (CEA) introduced LVRT in connection standards for wind power plants in 2013
 - Wind turbines commissioned after 15/04/2014 must be LVRT compliant
 - Compliance shall be tested and verified by a third party (part of type certification)
- CEA amendments to clarify grid codes for connectivity of wind turbines
 - Latest draft includes HVRT requirement for wind and solar power plants

TABLE I. CEA HVRT Proposal

<table>
<thead>
<tr>
<th>Overvoltage (p.u.)</th>
<th>Minimum time to remain connected (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 < U ≤ 1.4</td>
<td>1</td>
</tr>
<tr>
<td>1.1 < U ≤ 1.3</td>
<td>3</td>
</tr>
<tr>
<td>1.1 or below</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Source: CEA draft
Testing of HVRT Capability

Equipment design

- FGH development similar to LVRT setup
- Overvoltage with capacitive charging (Ferranti effect)
- Configuration according to grid effects
- Setup in accordance with IEC 61400-21 Ed. 3
- Modular layout, scalable and flexible
- Max. design: 170% U_n, 36 kV 8 MVA
Testing of HVRT Capability

Test System

- Examples of the test system layout

Pilot Testing in 2012

Commercial full-scale
Experiences in HVRT Testing

Pilot Projects

- Example: Testing of ENERCON WT with HVRT prototype testlab
- >100 tests, up to 140% U_n
 - Modified switching sequence to reach rectangular voltage shape, lower overshooting and transients
 - Saturation effects of transformer cause distorted and limited secondary voltage (max. 124% U_n)
 - Electrical design of the test circuit very crucial to avoid resonances or influences in ripple control
- Several test system successfully in operation in certification projects
Experiences in HVRT Testing

Grid Code Compliance

- Behavior of wind turbine according to requirements
 - no disconnection
 - voltage distortion without influence
 - adequate underexcited reactive current
Conclusion

- HVRT is crucial capability and subject to grid codes
 - Justification due to high decentralization or system characteristics (➔ India!)
- Compliance testing and verification is needed
 - Not only to turbines but only based on simulation for farms
- HVRT test systems and procedure available and successful in performance
 - Capacitive overvoltage based on real grid effects
 - Appropriate setup design important to prevent grid repercussion
- Grid codes and testing guidelines shall take saturation effects of transformers into account
 - Max. overvoltage, time duration, fault types
- Wind turbine investigation in terms of control strategies needed
Thank you for your attention!

julian.langstaedtler@fgh-ma.de
www.fgh-gmbh.com | info@fgh-gmbh.com